sklearn.cross_decomposition.PLSSVD¶
- class sklearn.cross_decomposition.PLSSVD(n_components=2, scale=True, copy=True)[source]¶
Partial Least Square SVD
Simply perform a svd on the crosscovariance matrix: X’Y There are no iterative deflation here.
Parameters: n_components : int, default 2
Number of components to keep.
scale : boolean, default True
Whether to scale X and Y.
copy : boolean, default True
Whether to copy X and Y, or perform in-place computations.
Attributes: x_weights_ : array, [p, n_components]
X block weights vectors.
y_weights_ : array, [q, n_components]
Y block weights vectors.
x_scores_ : array, [n_samples, n_components]
X scores.
y_scores_ : array, [n_samples, n_components]
Y scores.
See also
Methods
fit(X, Y) fit_transform(X[, y]) Learn and apply the dimension reduction on the train data. get_params([deep]) Get parameters for this estimator. set_params(**params) Set the parameters of this estimator. transform(X[, Y]) Apply the dimension reduction learned on the train data. - fit_transform(X, y=None, **fit_params)[source]¶
Learn and apply the dimension reduction on the train data.
Parameters: X : array-like of predictors, shape = [n_samples, p]
Training vectors, where n_samples in the number of samples and p is the number of predictors.
Y : array-like of response, shape = [n_samples, q], optional
Training vectors, where n_samples in the number of samples and q is the number of response variables.
Returns: x_scores if Y is not given, (x_scores, y_scores) otherwise. :
- get_params(deep=True)[source]¶
Get parameters for this estimator.
Parameters: deep: boolean, optional :
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
- set_params(**params)[source]¶
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.
Returns: self :