Fork me on GitHub

sklearn.metrics.mean_absolute_error

sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None)[source]

Mean absolute error regression loss

Parameters:

y_true : array-like of shape = [n_samples] or [n_samples, n_outputs]

Ground truth (correct) target values.

y_pred : array-like of shape = [n_samples] or [n_samples, n_outputs]

Estimated target values.

sample_weight : array-like of shape = [n_samples], optional

Sample weights.

Returns:

loss : float

A positive floating point value (the best value is 0.0).

Examples

>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
Previous
Next