sklearn.svm.libsvm.fit¶
- sklearn.svm.libsvm.fit()¶
Train the model using libsvm (low-level method)
Parameters: X : array-like, dtype=float64, size=[n_samples, n_features]
Y : array, dtype=float64, size=[n_samples]
target vector
svm_type : {0, 1, 2, 3, 4}, optional
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR respectively. 0 by default.
kernel : {‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’, ‘precomputed’}, optional
Kernel to use in the model: linear, polynomial, RBF, sigmoid or precomputed. ‘rbf’ by default.
degree : int32, optional
Degree of the polynomial kernel (only relevant if kernel is set to polynomial), 3 by default.
gamma : float64, optional
Gamma parameter in RBF kernel (only relevant if kernel is set to RBF). 0.1 by default.
coef0 : float64, optional
Independent parameter in poly/sigmoid kernel. 0 by default.
tol : float64, optional
Numeric stopping criterion (WRITEME). 1e-3 by default.
C : float64, optional
C parameter in C-Support Vector Classification. 1 by default.
nu : float64, optional
0.5 by default.
epsilon : double, optional
0.1 by default.
class_weight : array, dtype float64, shape (n_classes,), optional
np.empty(0) by default.
sample_weight : array, dtype float64, shape (n_samples,), optional
np.empty(0) by default.
shrinking : int, optional
1 by default.
probability : int, optional
0 by default.
cache_size : float64, optional
Cache size for gram matrix columns (in megabytes). 100 by default.
max_iter : int (-1 for no limit), optional.
Stop solver after this many iterations regardless of accuracy (XXX Currently there is no API to know whether this kicked in.) -1 by default.
random_seed : int, optional
Seed for the random number generator used for probability estimates. 0 by default.
Returns: support : array, shape=[n_support]
index of support vectors
support_vectors : array, shape=[n_support, n_features]
support vectors (equivalent to X[support]). Will return an empty array in the case of precomputed kernel.
n_class_SV : array
number of support vectors in each class.
sv_coef : array
coefficients of support vectors in decision function.
intercept : array
intercept in decision function
probA, probB : array
probability estimates, empty array for probability=False