Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...¶
An illustration of various embeddings on the digits dataset.
The RandomTreesEmbedding, from the sklearn.ensemble module, is not technically a manifold embedding method, as it learn a high-dimensional representation on wich we apply a dimensionality reduction method. However, it is often useful to cast a dataset into a representation in which the classes are linearly-seperable.
Script output:
Computing random projection
Computing PCA projection
Computing LDA projection
Computing Isomap embedding
Done.
Computing LLE embedding
Done. Reconstruction error: 1.28513e-06
Computing modified LLE embedding
Done. Reconstruction error: 0.359893
Computing Hessian LLE embedding
Done. Reconstruction error: 0.211912
Computing LTSA embedding
Done. Reconstruction error: 0.212075
Computing MDS embedding
Done. Stress: 141100635.430416
Computing Totally Random Trees embedding
Computing Spectral embedding
Python source code: plot_lle_digits.py
# Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
# Olivier Grisel <olivier.grisel@ensta.org>
# Mathieu Blondel <mathieu@mblondel.org>
# Gael Varoquaux
# License: BSD, (C) INRIA 2011
print __doc__
from time import time
import numpy as np
import pylab as pl
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble, lda,
random_projection)
digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30
#----------------------------------------------------------------------
# Scale and visualize the embedding vectors
def plot_embedding(X, title=None):
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X - x_min) / (x_max - x_min)
pl.figure()
ax = pl.subplot(111)
for i in range(X.shape[0]):
pl.text(X[i, 0], X[i, 1], str(digits.target[i]),
color=pl.cm.Set1(y[i] / 10.),
fontdict={'weight': 'bold', 'size': 9})
if hasattr(offsetbox, 'AnnotationBbox'):
# only print thumbnails with matplotlib > 1.0
shown_images = np.array([[1., 1.]]) # just something big
for i in range(digits.data.shape[0]):
dist = np.sum((X[i] - shown_images) ** 2, 1)
if np.min(dist) < 4e-3:
# don't show points that are too close
continue
shown_images = np.r_[shown_images, [X[i]]]
imagebox = offsetbox.AnnotationBbox(
offsetbox.OffsetImage(digits.images[i], cmap=pl.cm.gray_r),
X[i])
ax.add_artist(imagebox)
pl.xticks([]), pl.yticks([])
if title is not None:
pl.title(title)
#----------------------------------------------------------------------
# Plot images of the digits
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
for i in range(n_img_per_row):
ix = 10 * i + 1
for j in range(n_img_per_row):
iy = 10 * j + 1
img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))
pl.imshow(img, cmap=pl.cm.binary)
pl.xticks([])
pl.yticks([])
pl.title('A selection from the 64-dimensional digits dataset')
#----------------------------------------------------------------------
# Random 2D projection using a random unitary matrix
print "Computing random projection"
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
plot_embedding(X_projected, "Random Projection of the digits")
#----------------------------------------------------------------------
# Projection on to the first 2 principal components
print "Computing PCA projection"
t0 = time()
X_pca = decomposition.RandomizedPCA(n_components=2).fit_transform(X)
plot_embedding(X_pca,
"Principal Components projection of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# Projection on to the first 2 linear discriminant components
print "Computing LDA projection"
X2 = X.copy()
X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible
t0 = time()
X_lda = lda.LDA(n_components=2).fit_transform(X2, y)
plot_embedding(X_lda,
"Linear Discriminant projection of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# Isomap projection of the digits dataset
print "Computing Isomap embedding"
t0 = time()
X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X)
print "Done."
plot_embedding(X_iso,
"Isomap projection of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# Locally linear embedding of the digits dataset
print "Computing LLE embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
method='standard')
t0 = time()
X_lle = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_lle,
"Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# Modified Locally linear embedding of the digits dataset
print "Computing modified LLE embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
method='modified')
t0 = time()
X_mlle = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_mlle,
"Modified Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# HLLE embedding of the digits dataset
print "Computing Hessian LLE embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
method='hessian')
t0 = time()
X_hlle = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_hlle,
"Hessian Locally Linear Embedding of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# LTSA embedding of the digits dataset
print "Computing LTSA embedding"
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
method='ltsa')
t0 = time()
X_ltsa = clf.fit_transform(X)
print "Done. Reconstruction error: %g" % clf.reconstruction_error_
plot_embedding(X_ltsa,
"Local Tangent Space Alignment of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# MDS embedding of the digits dataset
print "Computing MDS embedding"
clf = manifold.MDS(n_components=2, n_init=1, max_iter=100)
t0 = time()
X_mds = clf.fit_transform(X)
print "Done. Stress: %f" % clf.stress_
plot_embedding(X_mds,
"MDS embedding of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# Random Trees embedding of the digits dataset
print "Computing Totally Random Trees embedding"
hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0,
max_depth=5)
t0 = time()
X_transformed = hasher.fit_transform(X)
pca = decomposition.RandomizedPCA(n_components=2)
X_reduced = pca.fit_transform(X_transformed)
plot_embedding(X_reduced,
"Random forest embedding of the digits (time %.2fs)" %
(time() - t0))
#----------------------------------------------------------------------
# Spectral embedding of the digits dataset
print "Computing Spectral embedding"
embedder = manifold.SpectralEmbedding(n_components=2, random_state=0,
eigen_solver="arpack")
t0 = time()
X_se = embedder.fit_transform(X)
plot_embedding(X_se,
"Spectral embedding of the digits (time %.2fs)" %
(time() - t0))
pl.show()
Total running time of the example: 20.95 seconds