8.17.8. sklearn.linear_model.LassoCV

class sklearn.linear_model.LassoCV(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False)

Lasso linear model with iterative fitting along a regularization path

The best model is selected by cross-validation.

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Parameters:

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3.

n_alphas : int, optional

Number of alphas along the regularization path

alphas : numpy array, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.

max_iter: int, optional :

The maximum number of iterations

tol: float, optional :

The tolerance for the optimization: if the updates are smaller than ‘tol’, the optimization code checks the dual gap for optimality and continues until it is smaller than tol.

cv : integer or crossvalidation generator, optional

If an integer is passed, it is the number of fold (default 3). Specific crossvalidation objects can be passed, see sklearn.cross_validation module for the list of possible objects

verbose : bool or integer

amount of verbosity

Notes

See examples/linear_model/lasso_path_with_crossvalidation.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.

Attributes

alpha_: float   The amount of penalization choosen by cross validation
coef_ array, shape = (n_features,) parameter vector (w in the cost function formula)
intercept_ float independent term in decision function.
mse_path_: array, shape = (n_alphas, n_folds)   mean square error for the test set on each fold, varying alpha
alphas_: numpy array   The grid of alphas used for fitting

Methods

decision_function(X) Decision function of the linear model
fit(X, y) Fit linear model with coordinate descent
get_params([deep]) Get parameters for the estimator
path(X, y[, eps, n_alphas, alphas, ...]) Compute Lasso path with coordinate descent
predict(X) Predict using the linear model
score(X, y) Returns the coefficient of determination R^2 of the prediction.
set_params(**params) Set the parameters of the estimator.
__init__(eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False)
decision_function(X)

Decision function of the linear model

Parameters:

X : numpy array of shape [n_samples, n_features]

Returns:

C : array, shape = [n_samples]

Returns predicted values.

fit(X, y)

Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters:

X : array-like, shape (n_samples, n_features)

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication

y : narray, shape (n_samples,) or (n_samples, n_targets)

Target values

get_params(deep=True)

Get parameters for the estimator

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

static path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)

Compute Lasso path with coordinate descent

The optimization objective for Lasso is:

(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Parameters:

X : ndarray, shape = (n_samples, n_features)

Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication

y : ndarray, shape = (n_samples,)

Target values

eps : float, optional

Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3

n_alphas : int, optional

Number of alphas along the regularization path

alphas : ndarray, optional

List of alphas where to compute the models. If None alphas are set automatically

precompute : True | False | ‘auto’ | array-like

Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.

Xy : array-like, optional

Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.

fit_intercept : bool

Fit or not an intercept

normalize : boolean, optional, default False

If True, the regressors X will be normalized before regression.

copy_X : boolean, optional, default True

If True, X will be copied; else, it may be overwritten.

verbose : bool or integer

Amount of verbosity

params : kwargs

keyword arguments passed to the Lasso objects

Returns:

models : a list of models along the regularization path

Notes

See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.

Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficents between the values output by lars_path

Examples

Comparing lasso_path and lars_path with interpolation:

>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T
>>> y = np.array([1, 2, 3.1])
>>> # Use lasso_path to compute a coefficient path
>>> coef_path = [e.coef_ for e in lasso_path(X, y, alphas=[5., 1., .5], fit_intercept=False)]
>>> print np.array(coef_path).T
[[ 0.          0.          0.46874778]
 [ 0.2159048   0.4425765   0.23689075]]
>>> # Now use lars_path and 1D linear interpolation to compute the
>>> # same path
>>> from sklearn.linear_model import lars_path
>>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso')
>>> from scipy import interpolate
>>> coef_path_continuous = interpolate.interp1d(alphas[::-1], coef_path_lars[:, ::-1])
>>> print coef_path_continuous([5., 1., .5])
[[ 0.          0.          0.46915237]
 [ 0.2159048   0.4425765   0.23668876]]
predict(X)

Predict using the linear model

Parameters:

X : numpy array of shape [n_samples, n_features]

Returns:

C : array, shape = [n_samples]

Returns predicted values.

score(X, y)

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the regression sum of squares ((y_true - y_pred) ** 2).sum() and v is the residual sum of squares ((y_true - y_true.mean()) ** 2).sum(). Best possible score is 1.0, lower values are worse.

Parameters:

X : array-like, shape = [n_samples, n_features]

Training set.

y : array-like, shape = [n_samples]

Returns:

z : float

set_params(**params)

Set the parameters of the estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Returns:self :
Previous
Next