8.17.29. sklearn.linear_model.lasso_path¶
- sklearn.linear_model.lasso_path(X, y, eps=0.001, n_alphas=100, alphas=None, precompute='auto', Xy=None, fit_intercept=True, normalize=False, copy_X=True, verbose=False, **params)¶
Compute Lasso path with coordinate descent
The optimization objective for Lasso is:
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
Parameters: X : ndarray, shape = (n_samples, n_features)
Training data. Pass directly as fortran contiguous data to avoid unnecessary memory duplication
y : ndarray, shape = (n_samples,)
Target values
eps : float, optional
Length of the path. eps=1e-3 means that alpha_min / alpha_max = 1e-3
n_alphas : int, optional
Number of alphas along the regularization path
alphas : ndarray, optional
List of alphas where to compute the models. If None alphas are set automatically
precompute : True | False | ‘auto’ | array-like
Whether to use a precomputed Gram matrix to speed up calculations. If set to ‘auto’ let us decide. The Gram matrix can also be passed as argument.
Xy : array-like, optional
Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
fit_intercept : bool
Fit or not an intercept
normalize : boolean, optional, default False
If True, the regressors X will be normalized before regression.
copy_X : boolean, optional, default True
If True, X will be copied; else, it may be overwritten.
verbose : bool or integer
Amount of verbosity
params : kwargs
keyword arguments passed to the Lasso objects
Returns: models : a list of models along the regularization path
See also
lars_path, Lasso, LassoLars, LassoCV, LassoLarsCV, sklearn.decomposition.sparse_encode
Notes
See examples/linear_model/plot_lasso_coordinate_descent_path.py for an example.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a fortran contiguous numpy array.
Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficents between the values output by lars_path
Examples
Comparing lasso_path and lars_path with interpolation:
>>> X = np.array([[1, 2, 3.1], [2.3, 5.4, 4.3]]).T >>> y = np.array([1, 2, 3.1]) >>> # Use lasso_path to compute a coefficient path >>> coef_path = [e.coef_ for e in lasso_path(X, y, alphas=[5., 1., .5], fit_intercept=False)] >>> print np.array(coef_path).T [[ 0. 0. 0.46874778] [ 0.2159048 0.4425765 0.23689075]]
>>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas[::-1], coef_path_lars[:, ::-1]) >>> print coef_path_continuous([5., 1., .5]) [[ 0. 0. 0.46915237] [ 0.2159048 0.4425765 0.23668876]]