A demo of structured Ward hierarchical clustering on Lena imageΒΆ
Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece.
Script output:
Compute structured hierarchical clustering...
Elapsed time: 9.40236282349
Number of pixels: 65536
Number of clusters: 15
Python source code: plot_lena_ward_segmentation.py
# Author : Vincent Michel, 2010
# Alexandre Gramfort, 2011
# License: BSD 3 clause
print(__doc__)
import time as time
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering
###############################################################################
# Generate data
lena = sp.misc.lena()
# Downsample the image by a factor of 4
lena = lena[::2, ::2] + lena[1::2, ::2] + lena[::2, 1::2] + lena[1::2, 1::2]
X = np.reshape(lena, (-1, 1))
###############################################################################
# Define the structure A of the data. Pixels connected to their neighbors.
connectivity = grid_to_graph(*lena.shape)
###############################################################################
# Compute clustering
print("Compute structured hierarchical clustering...")
st = time.time()
n_clusters = 15 # number of regions
ward = AgglomerativeClustering(n_clusters=n_clusters,
linkage='ward', connectivity=connectivity).fit(X)
label = np.reshape(ward.labels_, lena.shape)
print("Elapsed time: ", time.time() - st)
print("Number of pixels: ", label.size)
print("Number of clusters: ", np.unique(label).size)
###############################################################################
# Plot the results on an image
plt.figure(figsize=(5, 5))
plt.imshow(lena, cmap=plt.cm.gray)
for l in range(n_clusters):
plt.contour(label == l, contours=1,
colors=[plt.cm.spectral(l / float(n_clusters)), ])
plt.xticks(())
plt.yticks(())
plt.show()
Total running time of the example: 9.82 seconds ( 0 minutes 9.82 seconds)