Fork me on GitHub

sklearn.gaussian_process.correlation_models.linear

sklearn.gaussian_process.correlation_models.linear(theta, d)

Linear correlation model:

theta, dx --> r(theta, dx) =
      n
    prod max(0, 1 - theta_j*d_ij) ,  i = 1,...,m
    j = 1
Parameters:

theta : array_like

An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parameter(s).

dx : array_like

An array with shape (n_eval, n_features) giving the componentwise distances between locations x and x’ at which the correlation model should be evaluated.

Returns:

r : array_like

An array with shape (n_eval, ) with the values of the autocorrelation model.

Previous
Next