3. Supervised learningΒΆ
- 3.1. Generalized Linear Models
- 3.2. Support Vector Machines
- 3.2.1. Classification
- 3.2.2. Regression
- 3.2.3. Density estimation, outliers detection
- 3.2.4. Support Vector machines for sparse data
- 3.2.5. Complexity
- 3.2.6. Tips on Practical Use
- 3.2.7. Kernel functions
- 3.2.8. Mathematical formulation
- 3.2.9. Frequently Asked Questions
- 3.2.10. Implementation details
- 3.3. Stochastic Gradient Descent
- 3.4. Nearest Neighbors
- 3.5. Feature selection
- 3.6. Gaussian Processes