Warning: This documentation is for scikits.learn version 0.7.1. — Latest stable version

Contents

6. Class reference

6.1. Support Vector Machines

svm.SVC([C, kernel, degree, gamma, coef0, ...]) C-Support Vector Classification.
svm.LinearSVC([penalty, loss, dual, eps, C, ...]) Linear Support Vector Classification.
svm.NuSVC([nu, kernel, degree, gamma, ...]) Nu-Support Vector Classification.
svm.SVR([kernel, degree, gamma, coef0, ...]) Support Vector Regression.
svm.NuSVR([nu, C, kernel, degree, gamma, ...]) Nu Support Vector Regression.
svm.OneClassSVM([kernel, degree, gamma, ...]) Unsupervised Outliers Detection.

6.1.7. For sparse data

svm.sparse.SVC([kernel, degree, gamma, ...]) SVC for sparse matrices (csr).
svm.sparse.NuSVC([nu, kernel, degree, ...]) NuSVC for sparse matrices (csr).
svm.sparse.SVR([kernel, degree, gamma, ...]) SVR for sparse matrices (csr)
svm.sparse.NuSVR([nu, C, kernel, degree, ...]) NuSVR for sparse matrices (csr)
svm.sparse.OneClassSVM([kernel, degree, ...]) NuSVR for sparse matrices (csr)
svm.sparse.LinearSVC([penalty, loss, dual, ...]) Linear Support Vector Classification, Sparse Version

6.2. Generalized Linear Models

linear_model.LinearRegression([fit_intercept]) Ordinary least squares Linear Regression.
linear_model.Ridge([alpha, fit_intercept]) Ridge regression.
linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.Lasso([alpha, fit_intercept]) Linear Model trained with L1 prior as regularizer (aka the Lasso)
linear_model.LassoCV([eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path
linear_model.ElasticNet([alpha, rho, ...]) Linear Model trained with L1 and L2 prior as regularizer
linear_model.ElasticNetCV([rho, eps, ...]) Elastic Net model with iterative fitting along a regularization path
linear_model.LARS([fit_intercept, verbose]) Least Angle Regression model a.k.a. LAR
linear_model.LassoLARS([alpha, ...]) Lasso model fit with Least Angle Regression a.k.a. LARS
linear_model.LogisticRegression([penalty, ...]) Logistic Regression.
linear_model.SGDClassifier([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD.
linear_model.SGDRegressor([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD
linear_model.lasso_path(X, y[, eps, ...]) Compute Lasso path with coordinate descent
linear_model.lars_path(X, y[, Xy, Gram, ...]) Compute Least Angle Regression and LASSO path

6.2.15. For sparse data

linear_model.sparse.Lasso([alpha, fit_intercept]) Linear Model trained with L1 prior as regularizer
linear_model.sparse.ElasticNet([alpha, rho, ...]) Linear Model trained with L1 and L2 prior as regularizer
linear_model.sparse.SGDClassifier([loss, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD
linear_model.sparse.SGDRegressor([loss, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD

6.3. Bayesian Regression

linear_model.BayesianRidge([n_iter, eps, ...]) Bayesian ridge regression
linear_model.ARDRegression([n_iter, eps, ...]) Bayesian ARD regression.

6.4. Naive Bayes

naive_bayes.GNB() Gaussian Naive Bayes (GNB)

6.5. Nearest Neighbors

neighbors.NeighborsClassifier([n_neighbors, ...]) Classifier implementing k-Nearest Neighbor Algorithm.
neighbors.NeighborsRegressor([n_neighbors, ...]) Regression based on k-Nearest Neighbor Algorithm.
ball_tree.BallTree Ball Tree for fast nearest-neighbor searches :
neighbors.kneighbors_graph(X, n_neighbors[, ...]) Computes the (weighted) graph of k-Neighbors for points in X
ball_tree.knn_brute(x, pt[, k]) Brute-Force k-nearest neighbor search.

6.6. Gaussian Mixture Models

mixture.GMM([n_states, cvtype]) Gaussian Mixture Model

6.7. Hidden Markov Models

hmm.GaussianHMM([n_states, cvtype, ...]) Hidden Markov Model with Gaussian emissions
hmm.MultinomialHMM([n_states, startprob, ...]) Hidden Markov Model with multinomial (discrete) emissions
hmm.GMMHMM([n_states, n_mix, startprob, ...]) Hidden Markov Model with Gaussin mixture emissions

6.8. Clustering

cluster.KMeans([k, init, n_init, max_iter, ...]) K-Means clustering
cluster.MeanShift([bandwidth]) MeanShift clustering
cluster.SpectralClustering([k, mode]) Spectral clustering: apply k-means to a projection of the graph laplacian, finds normalized graph cuts.
cluster.AffinityPropagation([damping, ...]) Perform Affinity Propagation Clustering of data

6.9. Metrics

metrics.euclidean_distances(X, Y[, ...]) Considering the rows of X (and Y=X) as vectors, compute the
metrics.unique_labels
metrics.confusion_matrix(y_true, y_pred[, ...]) Compute confusion matrix to evaluate the accuracy of a classification
metrics.roc_curve(y, probas_) compute Receiver operating characteristic (ROC)
metrics.auc(x, y) Compute Area Under the Curve (AUC) using the trapezoidal rule
metrics.precision_score(y_true, y_pred[, ...]) Compute the precision
metrics.recall_score(y_true, y_pred[, pos_label]) Compute the recall
metrics.fbeta_score(y_true, y_pred, beta[, ...]) Compute fbeta score
metrics.f1_score(y_true, y_pred[, pos_label]) Compute f1 score
metrics.precision_recall_fscore_support(...) Compute precisions, recalls, f-measures and support for each class
metrics.classification_report(y_true, y_pred) Build a text report showing the main classification metrics
metrics.precision_recall_curve(y_true, ...) Compute precision-recall pairs for different probability thresholds
metrics.r2_score(y_true, y_pred) R^2 (coefficient of determination) regression score function
metrics.zero_one_score(y_true, y_pred) Zero-One classification score
metrics.zero_one(y_true, y_pred) Zero-One classification loss
metrics.mean_square_error(y_true, y_pred) Mean square error regression loss

6.10. Covariance Estimators

covariance.Covariance([store_covariance]) Basic covariance estimator
covariance.ShrunkCovariance([...]) Covariance estimator with shrinkage
covariance.LedoitWolf([store_covariance]) LedoitWolf Estimator
covariance.ledoit_wolf(X[, return_shrinkage]) Estimates the shrunk Ledoit-Wolf covariance matrix.

6.11. Signal Decomposition

pca.PCA([n_components, copy, whiten]) Principal component analysis (PCA)
pca.ProbabilisticPCA([n_components, copy, ...])
pca.RandomizedPCA(n_components[, copy, ...]) Principal component analysis (PCA) using randomized SVD
fastica.FastICA([n_components, algorithm, ...]) FastICA; a fast algorithm for Independent Component Analysis
fastica.fastica(X[, n_components, ...]) Perform Fast Independent Component Analysis.

6.12. Cross Validation

cross_val.LeaveOneOut(n[, indices]) Leave-One-Out cross validation iterator
cross_val.LeavePOut(n, p[, indices]) Leave-P-Out cross validation iterator
cross_val.KFold(n, k[, indices]) K-Folds cross validation iterator
cross_val.StratifiedKFold(y, k[, indices]) Stratified K-Folds cross validation iterator
cross_val.LeaveOneLabelOut(labels[, indices]) Leave-One-Label_Out cross-validation iterator
cross_val.LeavePLabelOut(labels, p[, indices]) Leave-P-Label_Out cross-validation iterator

6.14. Feature Selection

feature_selection.rfe.RFE([estimator, ...]) Feature ranking with Recursive feature elimination
feature_selection.rfe.RFECV([estimator, ...]) Feature ranking with Recursive feature elimination and cross validation

6.15. Feature Extraction

feature_extraction.image.img_to_graph(img[, ...]) Graph of the pixel-to-pixel gradient connections
feature_extraction.text.RomanPreprocessor Fast preprocessor suitable for roman languages ..
feature_extraction.text.WordNGramAnalyzer([...]) Simple analyzer: transform a text document into a sequence of word tokens
feature_extraction.text.CharNGramAnalyzer([...]) Compute character n-grams features of a text document
feature_extraction.text.CountVectorizer(...) Convert a collection of raw documents to a matrix of token counts
feature_extraction.text.TfidfTransformer([...]) Transform a count matrix to a TF or TF-IDF representation
feature_extraction.text.Vectorizer(...) Convert a collection of raw documents to a matrix

6.15.8. For sparse data

feature_extraction.text.sparse.TfidfTransformer([...])
feature_extraction.text.sparse.CountVectorizer(...) Convert a collection of raw documents to a matrix of token counts
feature_extraction.text.sparse.Vectorizer(...) Convert a collection of raw documents to a sparse matrix

6.16. Pipeline

pipeline.Pipeline(steps) Pipeline of transforms with a final estimator