scikits.learn.cluster.MeanShift¶
- class scikits.learn.cluster.MeanShift(bandwidth=None)¶
MeanShift clustering
Parameters : bandwidth: float, optional :
Bandwith used in the RBF kernel If not set, the bandwidth is estimated. See clustering.estimate_bandwidth
Notes
Reference:
K. Funkunaga and L.D. Hosteler, “The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition”
The algorithmic complexity of the mean shift algorithm is O(T n^2) with n the number of samples and T the number of iterations. It is not adviced for a large number of samples.
Attributes
cluster_centers_: array, [n_clusters, n_features] Coordinates of cluster centers labels_: Labels of each point Methods
fit(X): Compute MeanShift clustering - __init__(bandwidth=None)¶
- fit(X, **params)¶
Compute MeanShift
Parameters : X : array [n_samples, n_features]
Input points