News

scikits.learn 0.5 is available for download. See what's new and tips on installing.

Videos

Watch the 2010 ICML Introductory Video by Gaël Varoquaux.

Participate

Fork the source code, join the mailing lists, report bugs to the issue tracker or participate in the next coding sprint. Read More...

Contents

Funding

Generous funding provided by INRIA, Google and others.

INRIA

INRIA

Read more ...

scikits.learn: machine learning in python

banner1 banner2 banner3 banner4

Easy-to-use and general-purpose machine learning in Python

scikits.learn is a Python module integrating classic machine learning algorithms in the tightly-knit world of scientific Python packages (numpy, scipy, matplotlib).

It aims to provide simple and efficient solutions to learning problems that are accessible to everybody and reusable in various contexts: machine-learning as a versatile tool for science and engineering.

Features:
License:

Open source, commercially usable: BSD license (3 clause)

A simple Example: recognizing hand-written digits

import pylab as pl

from scikits.learn import datasets, svm
digits = datasets.load_digits()
for index, (image, label) in enumerate(zip(digits.images, digits.target)[:4]):
    pl.subplot(2, 4, index+1)
    pl.imshow(image, cmap=pl.cm.gray_r)
    pl.title('Training: %i' % label)

n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))

classifier = svm.SVC()
classifier.fit(data[:n_samples/2], digits.target[:n_samples/2])

for index, image in enumerate(digits.images[n_samples/2:n_samples/2+4]):
    pl.subplot(2, 4, index+5)
    pl.imshow(image, cmap=pl.cm.gray_r)
    pl.title('Prediction: %i' % classifier.predict(image.ravel()))
_images/plot_digits_classification1.png

Warning

This documentation is relative to the development version, documentation for the stable version can be found here