scikits.learn.cluster.SpectralClustering¶
- class scikits.learn.cluster.SpectralClustering(k=8, mode=None)¶
Spectral clustering: apply k-means to a projection of the graph laplacian, finds normalized graph cuts.
Parameters : k: integer, optional :
The dimension of the projection subspace.
mode: {None, ‘arpack’ or ‘amg’} :
The eigenvalue decomposition strategy to use. AMG (Algebraic MultiGrid) is much faster, but requires pyamg to be installed.
Attributes
labels_: Labels of each point Methods
fit(X): Compute spectral clustering - __init__(k=8, mode=None)¶
- fit(X, **params)¶
Compute the spectral clustering from the adjacency matrix of the graph.
Parameters : X: array-like or sparse matrix, shape: (p, p) :
The adjacency matrix of the graph to embed.
Notes
If the pyamg package is installed, it is used. This greatly speeds up computation.