scikits.learn.glm.BayesianRidge¶
- class scikits.learn.glm.BayesianRidge(n_iter=300, eps=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, fit_intercept=True, verbose=False)¶
Bayesian ridge regression
Fit a Bayesian ridge model and optimize the regularization parameters lambda (precision of the weights) and alpha (precision of the noise).
Parameters : X : array, shape = (n_samples, n_features)
Training vectors.
y : array, shape = (length)
Target values for training vectors
n_iter : int, optional
Maximum number of interations. Default is 300.
eps : float, optional
Stop the algorithm if w has converged. Default is 1.e-3.
alpha_1 : float, optional
Hyper-parameter : shape parameter for the Gamma distribution prior over the alpha parameter. Default is 1.e-6
alpha_2 : float, optional
Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the alpha parameter. Default is 1.e-6.
lambda_1 : float, optional
Hyper-parameter : shape parameter for the Gamma distribution prior over the lambda parameter. Default is 1.e-6.
lambda_2 : float, optional
Hyper-parameter : inverse scale parameter (rate parameter) for the Gamma distribution prior over the lambda parameter. Default is 1.e-6
compute_score : boolean, optional
If True, compute the objective function at each step of the model. Default is False
fit_intercept : boolean, optional
wether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). Default is True.
Notes
See examples/glm/plot_bayesian_ridge.py for an example.
Examples
>>> from scikits.learn import glm >>> clf = glm.BayesianRidge() >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2]) BayesianRidge(n_iter=300, verbose=False, lambda_1=1e-06, lambda_2=1e-06, fit_intercept=True, eps=0.001, alpha_2=1e-06, alpha_1=1e-06, compute_score=False) >>> clf.predict([[1, 1]]) array([ 1.])
Attributes
coef_ array, shape = (n_features) Coefficients of the regression model (mean of distribution) alpha_ float estimated precision of the noise. lambda_ array, shape = (n_features) estimated precisions of the weights. scores_ float if computed, value of the objective function (to be maximized) Methods
fit(X, y) self Fit the model predict(X) array Predict using the model. - __init__(n_iter=300, eps=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, fit_intercept=True, verbose=False)¶
- fit(X, y, **params)¶
Fit the model
Parameters : X : numpy array of shape [n_samples,n_features]
Training data
y : numpy array of shape [n_samples]
Target values
Returns : self : returns an instance of self.
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the explained variance of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float