scikits.learn.glm.LARS¶
- class scikits.learn.glm.LARS(n_features, normalize=True)¶
Least Angle Regression model a.k.a. LAR
Parameters : n_features : int, optional
Number of selected active features
fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
Notes
See also scikits.learn.glm.LassoLARS that fits a LASSO model using a variant of Least Angle Regression
http://en.wikipedia.org/wiki/Least_angle_regression
See examples/glm/plot_lar.py for an example.
Examples
>>> from scikits.learn import glm >>> clf = glm.LARS(n_features=1) >>> clf.fit([[-1,1], [0, 0], [1, 1]], [-1, 0, -1]) LARS(normalize=True, n_features=1) >>> print clf.coef_ [ 0. -0.81649658]
Attributes
coef_ array, shape = [n_features] parameter vector (w in the fomulation formula) intercept_ float independent term in decision function. Methods
fit predict score - __init__(n_features, normalize=True)¶
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the explained variance of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float