scikits.learn.glm.LassoLARS¶
- class scikits.learn.glm.LassoLARS(alpha=1.0, max_features=None, normalize=True, fit_intercept=True)¶
Lasso model fit with Least Angle Regression a.k.a. LARS
It is a Linear Model trained with an L1 prior as regularizer. lasso).
Parameters : alpha : float, optional
Constant that multiplies the L1 term. Defaults to 1.0
fit_intercept : boolean
whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).
Notes
See examples/glm/plot_lasso_lars.py for an example.
See also scikits.learn.glm.Lasso that fits the same model using an alternative optimization strategy called ‘coordinate descent.’
Examples
>>> from scikits.learn import glm >>> clf = glm.LassoLARS(alpha=0.1) >>> clf.fit([[-1,1], [0, 0], [1, 1]], [-1, 0, -1]) LassoLARS(max_features=None, alpha=0.1, normalize=True, fit_intercept=True) >>> print clf.coef_ [ 0. -0.51649658]
Attributes
coef_ array, shape = [n_features] parameter vector (w in the fomulation formula) intercept_ float independent term in decision function. Methods
fit predict score - __init__(alpha=1.0, max_features=None, normalize=True, fit_intercept=True)¶
XXX : add doc # will only normalize non-zero columns
- fit(X, y, Gram=None, **params)¶
XXX : add doc
- predict(X)¶
Predict using the linear model
Parameters : X : numpy array of shape [n_samples, n_features]
Returns : C : array, shape = [n_samples]
Returns predicted values.
- score(X, y)¶
Returns the explained variance of the prediction
Parameters : X : array-like, shape = [n_samples, n_features]
Training set.
y : array-like, shape = [n_samples]
Returns : z : float